Livestock production and the abatement of agricultural GHG Emissions

Observations and Overview from work at University College Dublin

Nicholas M. Holden UCD School of Biosystems Engineering

Contents

- 1. Who and I and who do I represent
- 2. Agriculture vs. the agri-food chain
- 3. Scale and efficiency
- 4. Animals
- 5. Systems
- 6. The message?

Who am I and who do I represent?

Nicholas M. Holden

- * Associate Professor of Biosystems Engineering
- * My research is at the interface of soil science, agrometeorology and and agriculture systems, leaning towards applied research to answer questions about the environmental impacts of (mainly) grassland agricultural production systems
- * Have worked in Ireland with Agmet since 1995; CAgM rapporteur; Contributing author to CAgM GAMP; CAgM expert team member; CAgM expert team leader; COST networks on agrometeorology
- * Worked on climate change impacts on agriculture; adaptation to climate change (dairying); LCA of dairy and beef systems; dairy system modeling
- * Current work on Sustainable Nutrient Management Decision Support System (SNM-DSS); Soil Quality; spectroscopy; Carbon security (starting soon); microarrays for water quality assessment
- * Active proposals under review with DAFM-RSF (3); Agri-ICT (DAFM); SFI; FP7

Others at UCD / Disclaimer

- * Animal production (contributed materials):
 - * Dr. Tommy Boland
 - * Dr. Karina Pierce
 - * + research teams
- * Most of this work was conducted in collaboration with other research institutions in Ireland and aboard

Agriculture vs. the agri-food chain

The dairy system is complex...

Where are the emissions?

- * For milk (at the consumer), the farm stage accounts for:
 - * 80% GHG emissions
 - * 40% energy consumption (IDF, 2009)

Where are the emissions?

- * For milk produced in Ireland, emissions outside of Ireland account for about
 - * 15% of GHG emissions (Yan et al, 2012)
 - * 27% of GHG emissions (Casey and Holden, 2005)
- * Associated with concentrate feed, fertilizer and energy consumption

→ Focus on Agriculture and activity in Ireland...

Based on the work of the research teams of Dr Tommy Boland and Dr Karina Pierce

Animals

Pigs

Feeding regime:

- * Low protein diet meeting protein requirement with added synthetic A.A to prevent deficiency (1%) (LCP Diet = 83% wheat, 12% soya & 1.3% soya oil & mins/vits)
- * High protein diet supplying excess protein (HCP Diet = 65% wheat, 31% soya, 1.3% soya oil & mins/vits)

Spreading date:

* Slurry applied at 3 timings: Mid tillering – GS 25; Stem extension – GS 31-32; Flag Leaf – GS 37-39

Change in NOx emissions

Cows

Work at UCD:

- * The potential to reduce CH4/GHG emissions through manipulation of
 - * Forage type and quality
 - Dietary additives
 - * Animal genetics
 - Production system
- * Better understand the relationship between diet and rumen microbial population
- Model impacts of changes in production systems on GHG emissions

Cows – the animal

- * 12% difference in intake between efficient and inefficient cattle
- * No differences in daily CH4 emissions detected to date in Ireland
- → Reduces feed requirements and GHG emissions associated with feed production

Cows – the diet

- * Need to modify grass quality as this is the predominant input
- * Maize silage quality can have a similar effect
- * Can supplement diet with oils

Cows – the diet

Cows – the diet

Oils are expensive and their carbon footprint can be large

- The same fatty acids present in soya and linseed oil are found in grass
- Can we select for grass varieties with elevated fatty acid levels to reduce methane emissions?
- → Yes differences exist in the fatty acid content of grass; therefore we can select

Systems

The system is complex with multifunctional farms

Dairy LCA system diagram

Emissions basket?

* Agricultural production is a "system"... change one part and the rest is changed (c.f. definition of a system)

A system is an assembly of parts where:

- 1. The parts or components are connected together in an organised way
- The parts or components are affected by being in the system (and are changed by leaving it)
- 3. The assembly does something
- 4. The assembly has been identified by a person as being of special interest

Scale and efficiency

Scale 1: Farmlet

Example:

Farmlet scale research on using White Clover in place of

Fertilizer Nitrogen:

A clear signal is seen

Farms scale?

National scale?

Farmlet -> Farm

- * Using white clover as a source of nitrogen instead of mineral fertilizer could reduce the CF of milk by 12 to 24%
- * Sensitivity analysis indicated the result was robust
- * There is much uncertainty about how to upscale to demonstrate a national benefit
 - Animal efficiency
 - Grass and feed quality
 - Management efficiency

Scale 2: Farm

No clear signal from commercial farms

Farm -> Nation

- * Large variation was found in farm attributes and management tactics
 - * a 1.5 fold difference in fertilizer N input was used to support the same stocking density
 - * a 2.5 fold difference in concentrate fed for similar milk output per cow.
- * CV for milk CF was 13%
- * CF of the milk production from the 18 dairy farms was 1.23 ± 0.16 kg CO₂ eq/kg Energy Corrected Milk (ECM)
- → Farm survey data do not contain necessary information to properly caputre the importance of efficeincy and quality in the system

The messages

Where are the emissions?

Question

* Do we care about global GHG reduction or are we really only concerned about changing the numbers for Ireland?

Message...

- * To see the benefit of decisions in Ireland, the impact must be in Ireland
- * To make a real impact (rather than a political impact) we need to be good global citizens
- → think global, act local

What drives agricultural emissions?

Question

* Do we want to look at the mitigation of GHG emissions from the producer or the consumer perspective?

- * Inventory reporting ignores the "consumer → product → emissions" scenario
- * If we want to be a "low carbon" society we must guard against "carbon leakage"
- * There is no point in policy that merely shifts the burden elsewhere in the world, it must be eliminated through efficiency

At the animal scale...

Question

* Is there scope at the animal scale to reduce the impacts in Ireland?

- * YES
 - Increasing grass quality
 - Increasing quality of winter forage
 - * Select animals for efficiency
 - * Increase fatty acid content of diet either through
 - * Plant oils
 - * Grass breeding

At the farmlet scale...

Questions

* Under research conditions (farmlets) are further benefits seen by altering production tactics (such as using white clover)?

- * YES
 - * N fertilizer demand reduced (emissions beyond Ireland)
 - * Lower losses from soil (empirical observations weaker than the modeled signal!)

At the farm scale...

Question

* Under commercial conditions (farms) are the benefits of animal tactical choices discernable?

- * NO
 - * Only a weak signal detected (note: were farmers "trying"?)
- * YES
 - * There are some key indicators such as output per cow that are important
 - * Integrated dairy/beef systems also very promising
 - * Need to capture management data reflecting quality of inputs, efficiency and tactical decision (part of current proposal under Agri-IT scheme with EU partners)

At the national scale...

Question

* Can emission factors and empirical observations from research farmlets be used to calculate national scale impacts?

- * The results from research farmlet experiments must be treated with caution they do not necessarily transfer to commercial farms
- * Need verification under commercial conditions
- * We need to start collecting better data that will reflect the types of calculations that will be required

